

FICHE TECHNIQUE

Chrome Cobalt (Co-Cr-Mo) FT 029 – Indice 0

Cet alliage non-magnétique à base de cobalt, de chrome et de molybdène présente une résistance mécanique élevée ainsi qu'une haute tenue à la corrosion et à la fatique.

Il est communément utilisé pour la réalisation de pièces usinées ou forgées destinées à l'industrie orthopédique pour la chirurgie de remplacement complet des articulations mais également pour la fabrication de prothèses dentaires sur-mesure.

Il est généralement fourni en condition travaillé à mi-chaud ou recuit selon la résistance recherchée et dans sa version à bas carbone (alliage 1 suivant les normes de référence).

L'usinage de l'alliage Co-Cr-Mo est réputé difficile quel que soit le traitement thermique qu'il ait subit. L'utilisation d'un outillage adéquat est primordiale.

APPLICATIONS	AVANTAGES	
mplants orthopédiques, tiges vertébrales, vis Prothèses dentaires	Biocompatibilité Excellente résistance à la fatigue et à la corrosion	
NORMES	FORMES	
ASTM F1537 ISO 5832-12 ISO 22674 (applications dentaires)	BARRE	
	Diamètre 5 à 100 mm	
	Longueur 3000-3500 mm	
	Tolérance Ø≤20mm : h7-h9 – Ø>20mm : h11	
	DISQUES DENTAIRES	
	Diamètre 98.5 mm	
	Epaisseur 8 à 25 mm	

> COMPOSITION CHIMIQUE

%	С	Cr	Мо	Ni	Fe	Si	Mn	N	Со
min		26	5						Solde
max	0,14	30	7	1	0,75	1	1	0,25	

L'alliage Co-Cr-Mo de type 2, à haut carbone, autorise 0.15 à 0.35% de carbone.

FICHE TECHNIQUE

Chrome Cobalt (Co-Cr-Mo) FT 029 – Indice 0

> CARACTERISTIQUES MECANIQUES

Condition	Rm Résistance à la traction (MPa)	Rp 0,2 Limite d'élasticité (MPa)	Elongation (% min)	Striction (% min)
Recuit	897	517	20	20
Travaillé à chaud	1000	700	12	12
Travaillé à mi-chaud	1172	827	12	12

> PROPRIETES PHYSIQUES

Densité (g/cm³)	8,3
Dureté typique (HRC)	36-44
Module d'élasticité à 20 °C (N/mm²)	241 x 10³
Conductivité thermique à 20 °C (W/m °C)	12,6
Chaleur spécifique (J/Kg °C)	450
Coefficient moyen de dilatation thermique 20-500 °C 20-600 °C	14,1 x 10-6 14,5 x 10-6
Amagnétique	OUI
Biocompatible	OUI

Les informations et données techniques contenues dans cette fiche ont vocation d'information uniquement. Seules les informations reportées sur nos certificats d'analyse matière feront foi.

Lyon | Paris | Shanghai | Sao Paulo